2 research outputs found

    Detection of Specific Biological Antigens using AC Electrochemical Impedance Spectroscopy

    Get PDF
    When certain antigens are present in our environment, a rapid, on-site, accurate, selective, and repeatable detection method can be invaluable in preventing illness or saving lives. Rapid detection of these antigens is important to avert spreading infections. Currently, capturing a sample and sending it to a laboratory can take weeks to get results, which can be much too long. Conventional sensing methodologies include various electrical measurements as capacitive, potentiometric, piezoelectric, surface plasmon resonance (SPR), and quartz crystal microbalance (QCM). Of particular power and interest is Alternating Current (AC) Electrochemical Impedance Spectroscopy (EIS) which provides for the characterization of the electrical properties of many biological interfaces without biological destruction or interference. The application of unique detection techniques of the latter, in this dissertation, resulted in high selectivity and sensitivity even with the presence of non-specific contaminants. Prior to this work, the measurement media was a liquid. However, a particularly formidable task has remained of detection of unlabeled antigens in air. EIS, a powerful technique for identifying electrode surface molecular reactions by measuring the electrical characteristics of the resultants over a frequency spectrum, was employed to detect impedance changes at the formation of an antibody-antigen conjugate. A new gel was developed capable of keeping antibodies active for extended periods of time, and also capturing antigens from the air. Another development was attaching the self-assembling monolayer, 3-MPTS (3-mercaptopropyl)trimethoxysilane, onto gold nanopdissertations to create a unique active electrode. The primary purpose of this dissertation work was to prove the concept of being able to capture a specific (to the antibody) antigen in the air, conjugate it with a specially coated non-dry electrode, and rapidly characterize the reaction with EIS. This work was the first to successfully accomplish this detection task utilizing a novel colloidal gold nanopdissertation electrode, an active antibody, IgG, and a novel modified hydrogel

    Design and Implementation of EPARK Wireless Parking Payment System Using Pervasive Computing

    No full text
    The advent of ubiquitous computing has prompted the development of wireless applications within a pervasive computing environment. PDA\u27s and cell phones are the current logical choice for these implementations. However, the display characteristics of these devices vary greatly, and are certain to continue evolving. In order to handle existing and future breeds of these devices, a configurable, scalable, and maintainable interface, based upon standards definitions, is imperative. In this paper, we present the design and implementation of the EPARK wireless parking payment system built using pervasive computing. Our system utilizes XSLT (eXtensible Stylesheet Language Transformations) of standard XML (eXtensible Markup Language) for performing device adaptability and data validation
    corecore